Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

Rev 1.10 CRM08 15/11/2022

CONTINUOUS INTERNAL EVALUATION- 1

Dept: CSE	Sem / Div: 5th A and B	Sub: Automata Theory and Computability	S Code: 18CS54
Date: 22/11/2022	Time: 3:00 - 4:30 PM	Max Marks: 50	Elective: N
Note: Answer any 2	full questions, choosing	one full question from each p	part.

Q		Marks	RBT	COs
1	PART A			
1 8	Discuss standard operations on Languages with example.	4	L2	Ć01
t	b Briefly explain hierarchy of languages with a diagram.		L2	CO1
	For the following NDFSM, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of eps(q) for each state q.		L3	C01
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	Minimize the following DFSM.	8	L3	CO1
	OR			
2 8	Explain with example, i. Alphabet ii. Language iii. Functions on string	4	L2	CO1
t	Define a Moore Machine and a Mealy Machine. Give an example for each.	5	L2	CO1
0	Design a DFSM for the following languages. i. L = { w ∈ {a, b}*: where w mod 3 < w mod 2 }. Write configurations for "baabab" ii. L={w ∈ {a, b}*: w contains an odd number of a's and an odd		13	CO1
Prepared by: Prof. Roopa GK , Prof. Pramod Kumar PM Page: 1			DD D	

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi 15/11/2022 CRM08

TINUOUS INTERNAL EVALUATION- 1

Rev 1.10

CONTINUOUS INTERNAL EVALUATION			
number of b's}. Write the configurations for "aabbab"	8	L3	CO1
d Design a NDFSM for the following languages:			
i. $L=\{w\xi\{a,b\}^*$ The third character from the first is a}			
ii. L={ $abab^n n>=0$ } or { $aba^n n>=0$ }			
PART B			10010
3 a Minimize the DFSM.	8	L3	CO1,2
A O B I C O D			
E / F / G O H			
b Construct DFSM which accepts strings of 0's and 1's where the value of each string is represented as binary number and the string divisible	8	L3	CO1,2
by 5 is accepted by 5 is accepted consider the following languages:	9	L3	CO1,2
c Write Regular expressions for the following languages: i. $L = \{w \in \{0, 1\}^* : \text{ every odd length string in } L \text{ begins with}$			
11}. ii $L = \{w \in \{0-9\}^* : w \text{ represents the decimal encoding of an odd}\}$			
natural number without leading 0's. iii. L= $\{w \in \{a, b\}^* : w \text{ contains exactly two occurrences of the } \}$			
substring aa}.			
OR Cive example	8	L2	CO1,2
b Construct DFSM to strings of a's and b's which ends with ab or ba. Also write computation for baaaba and baabab	8	L3	CO1,2
Also write computation for battless c Write Regular expressions for the following languages: i. L = {w ∈ {a, b}* : w has both aa and bb as substrings}. ii. L = {w : w mod 3=0 where w ∈ (a, b)*} iii. L = {a ⁿ b ^m n>=4, m<=3 }	9	L3	CO1,2